

Study of the evolution of the energy performance of photovoltaic systems under different aging conditions

Pierre-Olivier LOGERAIS

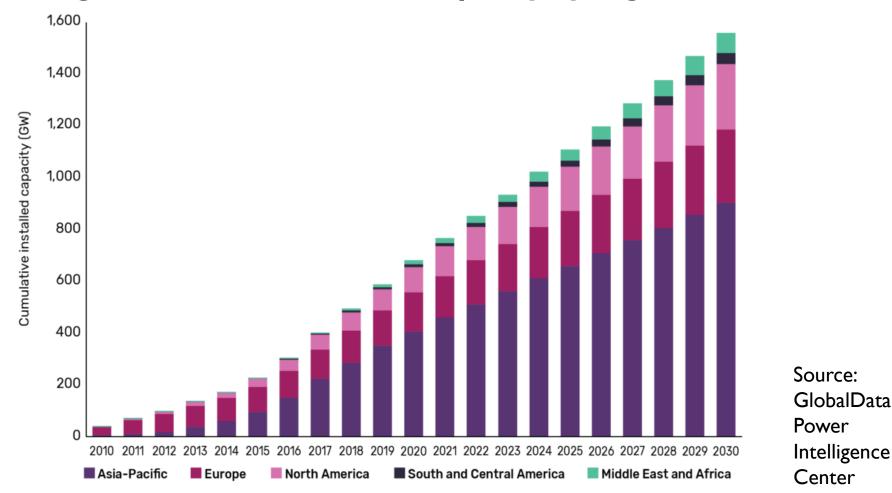
Université Paris-Est Créteil, CERTES, IUT de Sénart-Fontainebleau, France

4 October 2022

I. Diversity of photovoltaic (PV) systems

II. Degradation of PV modules and approach

III. Four PhD studies supervised between 2014 and 2022


- PV plants of Sourdun (Île-de-France) and of Melouka (Algeria)
- UV accelerated test platform OSED-aging
- Model of a PV grid-connected system
- Model of a GaAs solar cell in outer space

IV. Conclusion and perspectives

I. Diversity of photovoltaic systems

Cumulative global solar PV installed capacity by region 2010-2030

I. Diversity of photovoltaic systems

PV grid-connected systems

Integration of three PV façades

Building of the Tourist Office in Alès, France 9,5 kW

The world's first **solar road** Tourouvre-au-Perche in Normandy, France

Rooftop photovoltaic plant

La Haye-les-Roses, Val de Marne, Paris, France 4,3 MW

Full roof BIPV

Umwelt arena Spreitenbach, Zurich, Switzerland

750 kW

Power plants

Copper Mountain Solar Facility in Nevada, USA 458 MW

Floating solar PV O'MEGA1 project, Piolenc, Vaucluse, France 17 MW

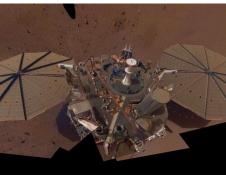
4

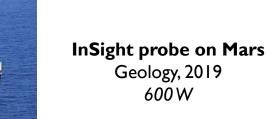
I. Diversity of photovoltaic systems

Autonomous system

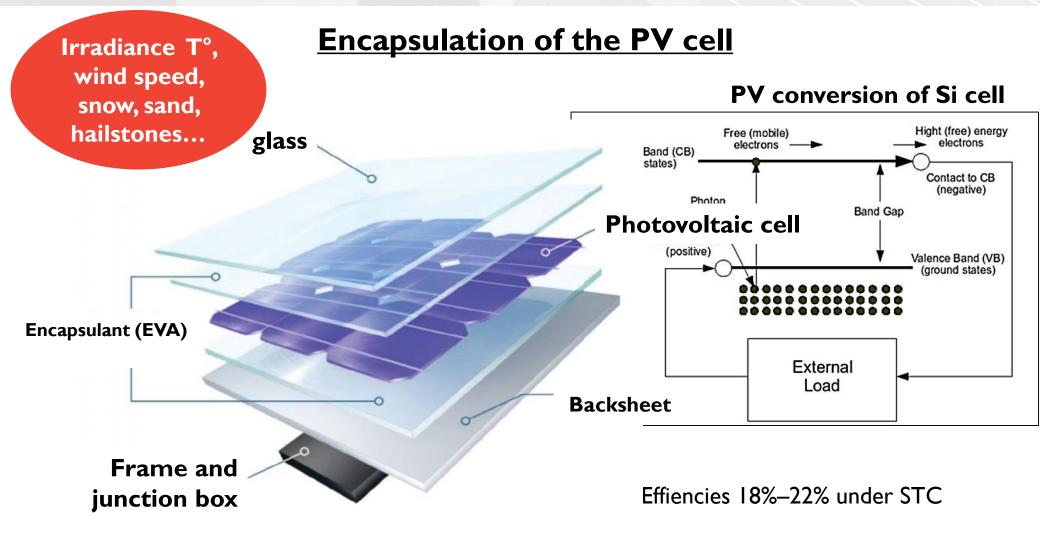
Helios solar plane $\sim 35 \text{ kW}$

Solar water pump 900W




Sign board $\sim 100 W$

Jason-1 satellite Earth observing system, 2001 *500* W



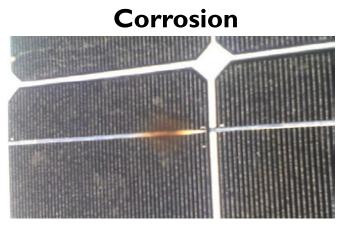
Rovers on Mars Sojourner mission 1996 *450* W

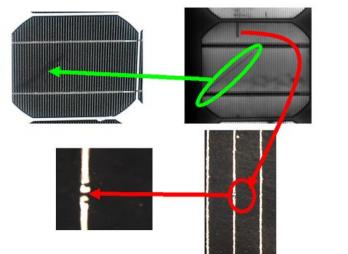
6

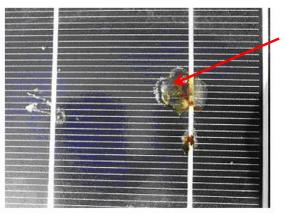
Degradation modes : optical parts

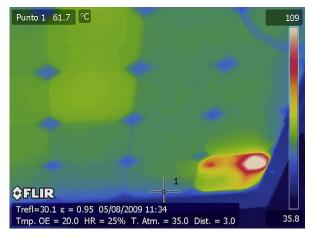
Yellowing (browning) Glass cracks

Delamination


Sealing problems (moisture ingress)


Internal seminary CERTES 2022


Degradation modes : electrical parts



Microcracks (electroluminescence)

Hot spots (IR thermography)

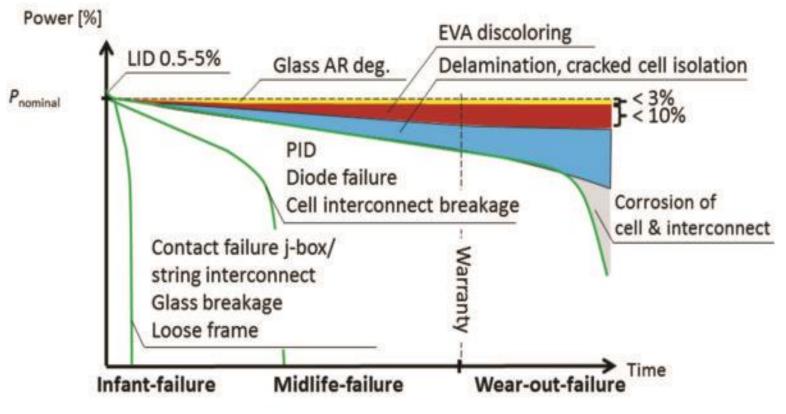
8

Degradation modes : electrical parts

Junction box replacement

Mechanical load (snow, hail)

Detachment of the frame



Scenarios for wafer-based crystalline photovoltaic modules

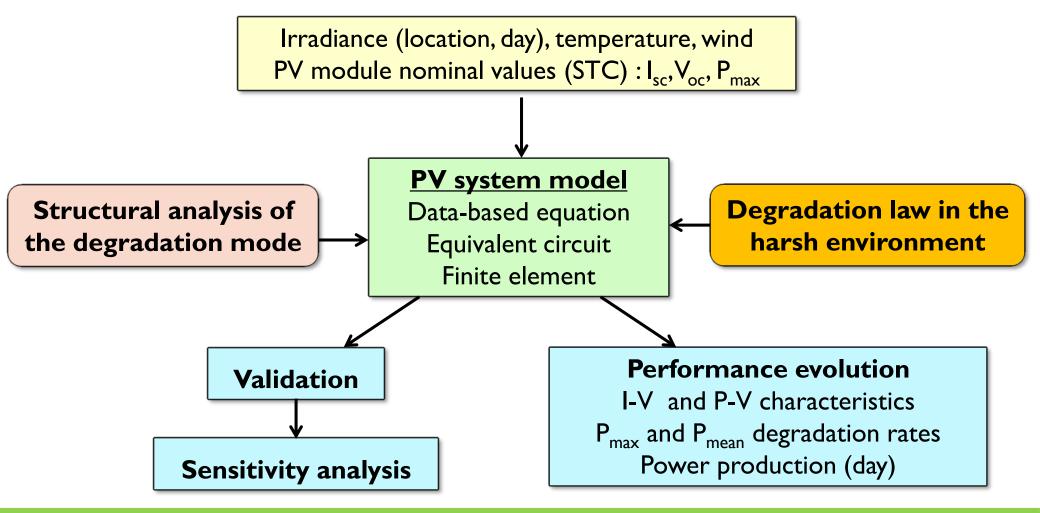
LID – light-induced degradation ; PID – potential induced degradation EVA – ethylene vinyl acetate ; j-box – junction box

Review of Failures of Photovoltaic Modules, IEA, Report IEA-PVPS T13-01:2014

Key benefits of environment-specific degradation rates

Technical benefits

- Performance closer to current technological conversion limit
- Fitting of PV cell technology to operation environment from the start
- Easy repowering of PV plants
- Reliability and durability of PV materials
- Preventive maintenance


Economical benefits

- Cumulative yield increase over lifetime
- Dependability of ROI
- Reduced maintenance costs
- Low-energy (lower carbon footprint)

П

Quantifying the impact of aging on performance

III. Studied systems

Photovoltaic system	Power scale	Environment	PV system model	Aging law	Validation	Sensible parameter	Knowledge
Plant Sourdun (France)	MW	temperate climate	Data-based equation from IEC 61724 analysis	PR degradation rate	Difference vs. real production < 1%	Irradiance and temperature	Relation E _{out} = f(G)
Plant Melouka (Algeria)	MW	Desert	Equation based on in-situ I-V measurement	P _{max} degradation rate	Degradation rates in literature	Observed degradation modes	Degradation rate of 1.22%/year
PV conversion line (MPPT + passive filter)	kW	Hot temperate climate	Equivalent circuit	Transmissivity τ(t) Resistances R _i (t)	Degradation rates in literature	Electrical resistances	30% power reduction after 20 years
Supercapacitor storage PV energy	100 W	temperate climate	Equivalent circuit	Transmissivity τ(t) Resistances R _i (t) Capacitances C _i (t)	Outdoor measurement on a test bench	Capacitance of aged supercapacitors	Charge/discharge dynamics
Mono-Si PV panel with load in DH conditions	100 W	Damp heat	Equivalent circuit	Transmissivity τ(t) Resistances R _i (t)	Agreement with the case of Miami, USA	Optical degradations	Energy production projection for 25 years
PV cell with cracked Si cell	10W	Snow	Physical-based equation	Inactive area	Agreement with values in the literature	Cracked surface	Energy loss over one given day
GaAs, InP junctions in space	w	Electron and proton irradiations in outer space	Finite element	Hole and electron traps Dose of particles	Agreement with DLTS measurements and satellite mission results	Recombination centers	Degradation of P _{max} and efficiency over time

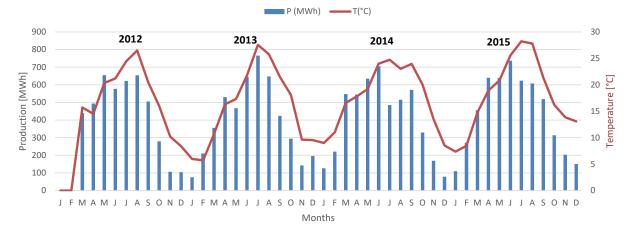
III. Studied systems PV plant of Sourdun (i)

In the Seine-et-Marne area 4,5 MWp 12 acres of land p-Si modules temperate climate

In service since March 2012 Exploited by the Générale du solaire

III. Studied systems PV plant of Sourdun (ii)

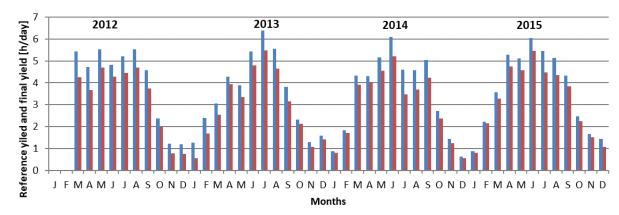
Performance study from January 2012 up to December 2018:


Monitored parameters: G, E, P, T_{mod} , T_a , v (timestep of 15 minutes) Calculation of the **parameters specified by IEC 61724 standards (2017)**:

- reference yield:
$$Y_r = \left(\frac{H_r}{G_0}\right)$$

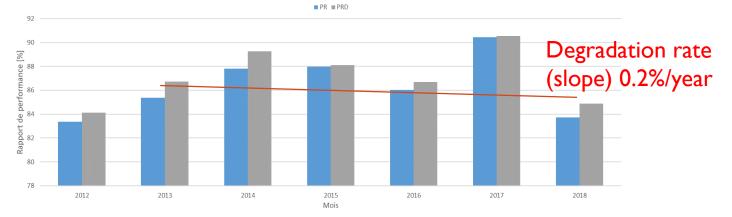
- final yield: $Y_f = \left(\frac{E_{ac}}{P_0}\right)$
- availability: $D = 1 - \left(\frac{sum(DI \times TP)}{DPR}\right)$
- performance ratio: $PR = \left(\frac{Y_f}{Y_r}\right)$
- corrected performance ratio: $PR_c = \left(\frac{PR}{1 + \alpha(Tm - Tn)}\right)$ => Degradation rate

III. Studied systems PV plant of Sourdun (iii)

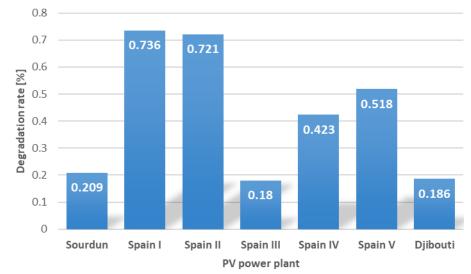


Monthly evolution of production and ambient temperature

Monthly evolution of daily reference yield and final yield


Vr Yf

III. Studied systems PV plant of Sourdun (iv)



Monthly evolution of production and ambient temperature.

Degradation rate regarding other PV installations studied within IEC 61724 standard.

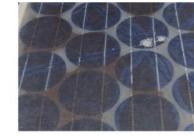
M. Jed et al., Int. J. Sustainable Engineering, 14(6), 2021

17

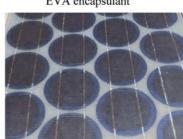
III. Studied systems Melouka PV installation (i)

Region of Adrar (Ageria)

30.24 kWp 864 PV Si-modules of type Belgosolar 48 strings of 18 modules Inclination 17.5° In service since 1985 Experimental studied with the CDER


III. Studied systems Melouka PV installation (ii)

Degradations observed during the survey of photovoltaic modules of the site after 28 years in operation.


M01: Dark brown discoloration of EVA encapsulant

M02: Broken front glass

M03: Abrasion of glass

M04: Higher degree of browning of cells

M07: Yellowing of encapsulant

M05: Reddish discoloration on front grid fingers

M08: Hot spots in the area of the cells

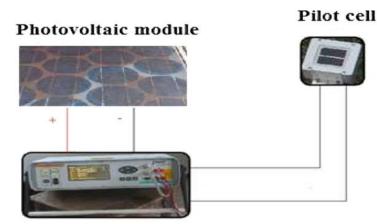
M06: Delamination of encapsulant

M09: Thermal shocks

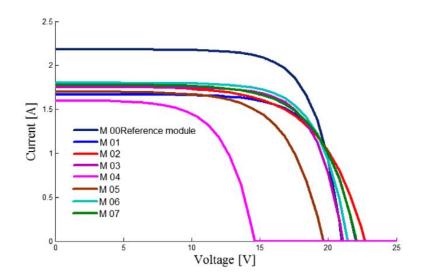
F. Bandou et al., IJHE, 14(6), 2021

III. Studied systems Melouka PV installation (iii)

In-situ measurements of I-V curves after 27 years in operation:


STC translation equations using IEC 60891 translation procedure:

$$I_{max,STC} = I_{max,mes} \left(\frac{G_{STC}}{G_{mes}} \right) + \alpha (T_{mod} - T_{STC})$$

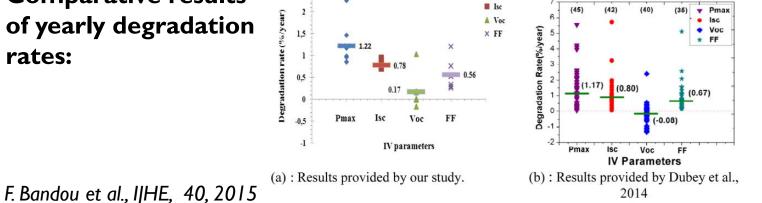

 $V_{max,STC} = V_{max,mes} - \beta(T_{STC} - T_{mod})$

$$P_{max,STC} = I_{max,STC} imes V_{max,STC}$$

I-V characteristic curves of the M0I-M07 modules tested outdoor translated to standard test conditions (1000 W/m², AMI.5 and cell temperature 25°C).

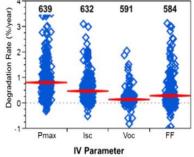
PVPM2540C

III. Studied systems Melouka PV installation (iv)



Module			Uncertainties	$P_{max} \pm u(P_{max})$	$R_{\rm D} \pm u(R_{\rm D})$ for $P_{\rm max}$	
	Current u(I _{max})	o (mes,		Temperature u(T _{mod})	(W)	(%/year)
M01	0.09	0.05	0.45	0.26	23.54 ± 1.09	1.17 ± 0.04
M02	0.01	0.04	1.47	0.63	25.56 ± 0.64	0.96 ± 0.03
M03	0.01	0.25	0.60	0.35	26.56 ± 0.85	0.86 ± 0.02
M04	0.03	0.57	5.76	1.32	12.88 ± 1.42	2.26 ± 0.08
M05	0.03	0.03	0.46	0.43	20.58 ± 0.58	1.74 ± 0.06
M06	0.05	0.034	4.58	0.41	25.31 ± 0.53	0.99 ± 0.03
M07	0.012	0.08	0.71	0.16	26.68 ± 0.68	0.85 <u>+</u> 0.03
Mean values	;				23.02 ± 0.83	1.22 ± 0.04

Degradation rate of the maximum power:


2,5

Comparative results of yearly degradation rates:

Pmax

Mono c-Si

(c) : Results provided by Jordan et al., 2012

21

III. Studied systems UV accelerated test (i)

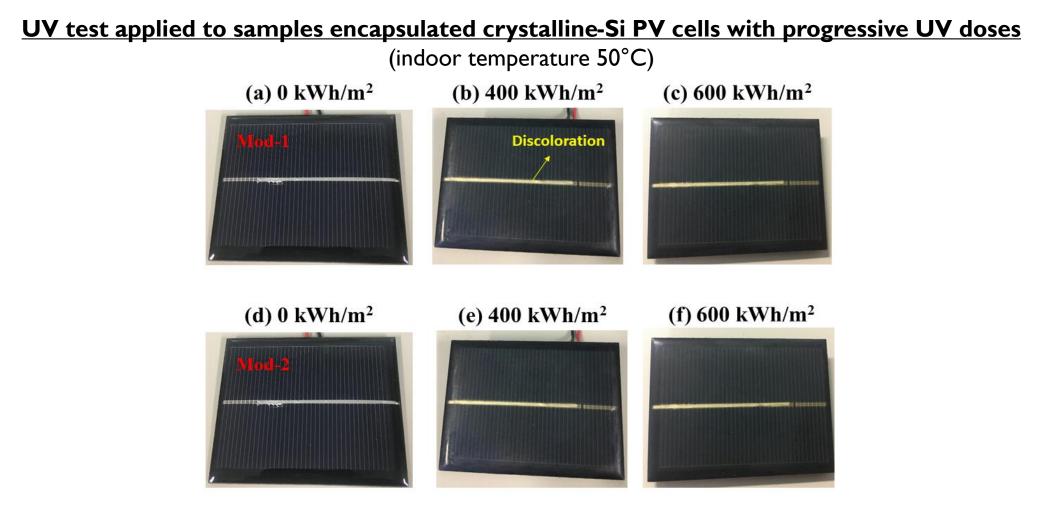
OSED-aging platform (Sénart)

The UV chamber

- Brand : INVE 2000, Helios Quartz
- Chamber temperature at $50^{\circ}C \pm 5^{\circ}C$
- 500 W medium-pressure mercury UV lamp
- Incident irradiance fixed at $600 W/m^2$ in the wavelength range [250 400 nm].

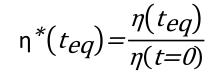
The solar simulator

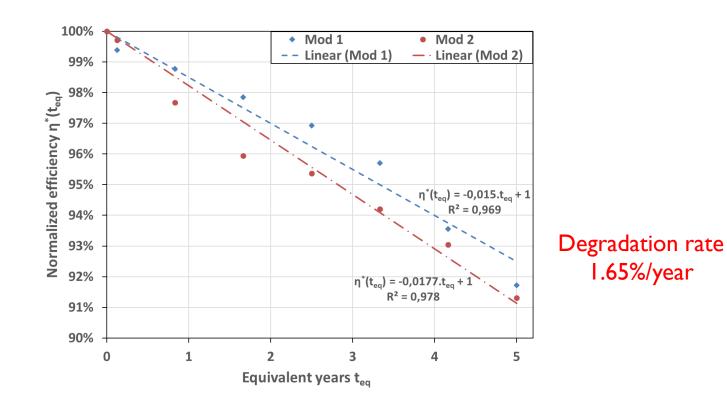
- Brand : SolarLight type LS1000-6S
- Class-A for the spectral match and temporal instability classification $(\pm 5 \%)$
- Class-B for the irradiance uniformity $(\pm 10 \%)$
- Source is a 1000 W xenon lamp with an AM 1.5G filter.
- Temperature-controlled vacuum to maintain STC conditions



III. Studied systems UV accelerated test (ii)

Presented by V. R. Posa et al.. JNPV conference, 2020

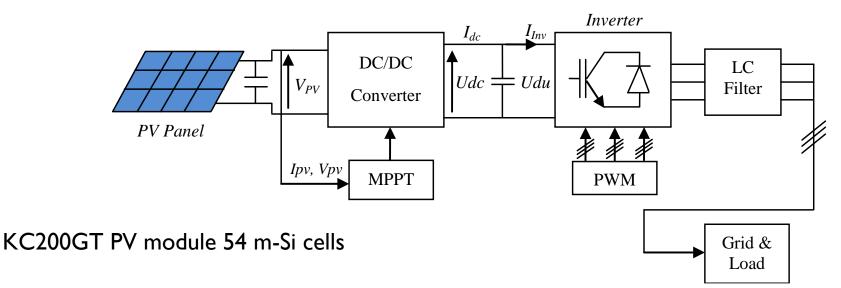

III. Studied systems UV accelerated test (iii)



Degradation equivalent relation

Outdoor UV dose of 120 kWh/m² \Leftrightarrow 1 year exposure in PV modules operating in the desert environment (*M. Koehl, Proc. of SPIE, 7412, 2009*) => Test time in equivalent years

Normalized efficiency:



III. Studied systems Grid-connected PV module (i)

Modeled photovoltaic conversion line

MPPT: P&O: Perturb and Observe

Passive LC filter

=> Matlab/Simulink model

Sizing of the system A. Azizi et al.. Solar Energy, 174, 2018

III. Studied systems Grid-connected PV module (ii)

Hybrid detection method introducing aging laws

MPP Tracking: time t <<T (inter-annual time)

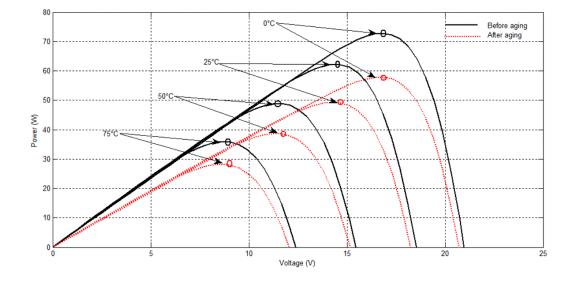
Aging laws:

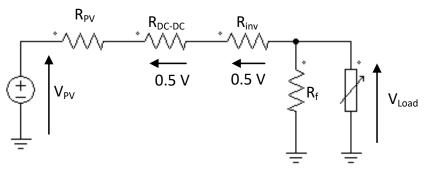
85°C/85% RH damp Heat on c-Si modules

Equivalent time: 1000 hours test time \Leftrightarrow 20 years of outdoor exposure (IEC 61215 standards, 2016)

- Linear reduction of the transmissivity τ (glass optical losses and encapsulating losses): $\tau(T) = \tau_0(-\alpha_{opt}.T + 100\%)$ $\alpha_{opt} = 0.6\%/\text{year}$ (King at al., 2000)
- Linear augmentation of the series resistance R_s (deterioration of electrical parts): $R_s(T) = R_{s0} (+ \alpha_{R_s} T + 100\%)$ $\alpha_{R_s} = 0.23 \%/\text{year}$ (Hulkoff, 2009)

A. Azizi et al.. Solar Energy, 174, 2018

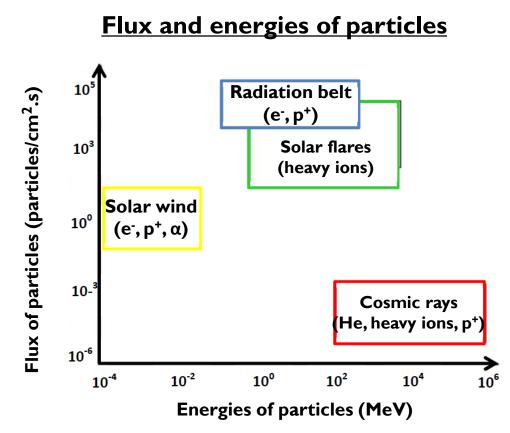

III. Studied systems Grid-connected PV module (iii)



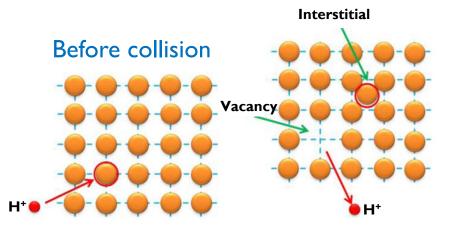
Outcomes

Impact of aging with influence of the temperature P-V characteristics after 20 years.

Equivalent circuit of the photovoltaic system with aging resistances



A. Azizi et al.. Solar Energy, 174, 2018


III. Studied systems GaAs solar cell in space (i)

Displacement of an atom by a proton

After collision

Consequences

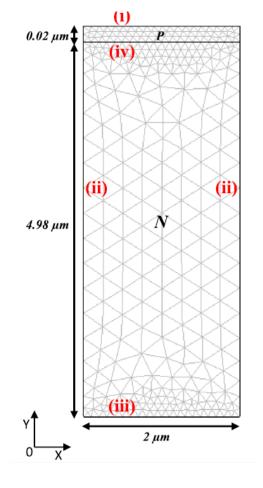
- Trapping of carriers
- Deep level defects
- Generation of electron-hole pairs
- Recombinations
- Doping compensation
- Tunnel effect

III. Studied systems GaAs solar cell in space (ii)

Modeling of the PN junction

Poisson's continuity equations:

 $-\nabla . (\varepsilon. \nabla \psi) = q(p - n + N)$ $\frac{dJ_n}{dx} = -q(G_{opt} - R_{SRH})$ $\frac{dJ_p}{dx} = q(G_{opt} - R_{SRH})$


Optical generation:

 $G_{opt} = (1 - R) \cdot \alpha(\lambda) \cdot \phi \exp(-\alpha(\lambda) \cdot x)$ with an absorption coefficient :

$$\alpha(\lambda) = K_{abs} \cdot \sqrt{\frac{1,24}{\lambda[\mu m]}} - E_g$$

Shockley-Read-Hall recombination: $R_{SRH} = \sum_{j=1}^{m} \frac{n.p - n_i^2}{\tau_p \cdot (n+n_t) + \tau_n(p+p_t)}$

Lifetime of electrons and holes: $\frac{1}{\tau_{n/p}} = \frac{1}{\tau_{0_{n/p}}} + \frac{1}{\tau_{rad_{n/p}}} + N_t \sigma_{n/p} v_{th_{n/p}}$

in which the trap concentration is associated to the recombination centers k and to the fluence φ : $N_t = k. \varphi$

III. Studied systems GaAs solar cell in space (iii)

Aging properties

Parameters of the considered mission

Duration	15 years
Satellite power consumption	15 kW
Electron radiation/year/cm ² (I MeV) R _{radE}	1.4×10 ¹³
Proton radiation/year/cm ² (10 MeV) R _{radP}	2.3× 10 ¹⁰

Characteristics of electron and hole traps observed for I MeV electron irradiated GaAs solar cells

Electron fluence (e/cm2)		Electron tra	ps	Hole traps				
	E	E _t (eV)	N_t (cm ⁻³)	Н	E _t (eV)	$N_t (cm^{-3})$		
10 ¹⁴	E1	Ec-0.14	1.8 10 ¹³	H1	Ev+0.71	3 10 ¹²		
	E2	Ec-0.41	8.2 10 ¹²					
	E3	Ec-0.71	3 10 ^{10a}					
	E4	Ec-0.90	8.8 10 ¹¹					
10 ¹⁵				H1	Ev+0.13	2.2 10 ¹⁴		
	E2	Ec-0.41	2.1 10 ¹⁴	H2	Ev+0.29	4 10 ¹⁴		
	E3	Ec-0.71	1.7 10 ¹³	H3	Ev+0.35	8 10 ¹³		
	E4	Ec-0.90	2.8 10 ¹³	H4	Ev+0.71	6.4 10 ¹³		
5.10 ¹⁵				H1	Ev+0.13	8.9 10 ¹⁴		
	E2	Ec-0.41	4.5 10 ¹⁴	H2	Ev+0.29	1.5 10 ¹⁵		
	E3	Ec-0.71	3.2 10 ¹³	H3	Ev+0.35	1 10 ¹⁵		
	E4	Ec-0.90	5 10 ¹⁵	H4	Ev+0.71	1.9 10 ¹⁴		
10 ¹⁶				H1	Ev+0.13	8.4 10 ¹⁴		
	E2	Ec-0.41	8.8 10 ¹³	H2	Ev+0.29	1.6 10 ¹⁵		
	E3	Ec-0.71	5 10 ¹³	H3	Ev+0.35	1 10 ¹⁵		
	E4	Ec-0.90	6.5 10 ¹³	H4	Ev+0.71	2.7 10 ¹⁴		

Bourgoin, Zazoui, Semicond Sci Technol 2002;17:453-60.

III. Studied systems GaAs solar cell in space (iv)

Aging law

Irradiation data and defects engendered for the GEO mission (Habraken et al. 2001) Log formalism of the efficiency decay (La Roche et al. 1993; Yamaguchi 2001).

The cumulated dose D_{grd} (in particles/cm²) :

$$D_{grd} = T. log (R_{rad} + \varphi)$$

where

 R_{rad} : irradiation rate of the electrons (or protons)

T: time in year

 φ : fluence linked to the introduction rate of the recombination centers k and to the trap concentration: $N_t = k.\varphi$

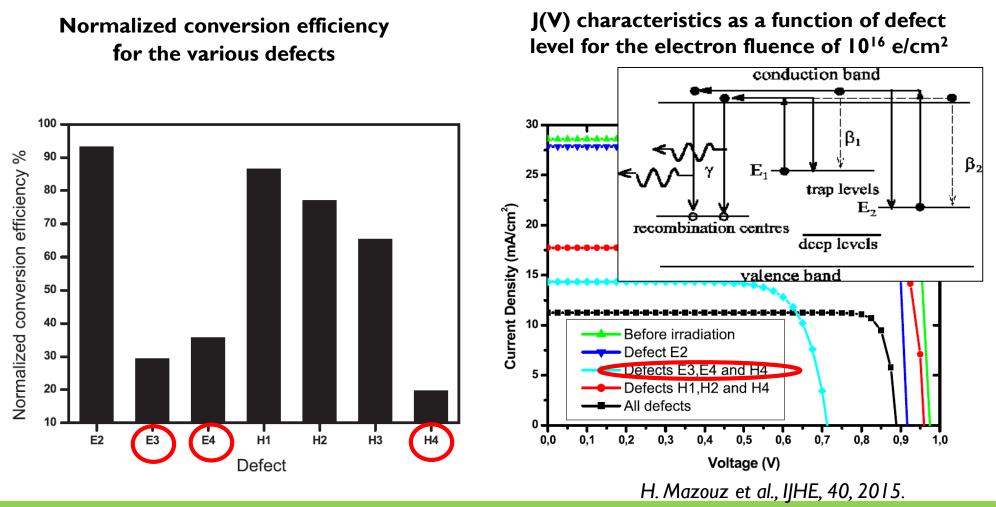
H. Mazouz et al., IEEE JPV, 9(6), 2019

III. Studied systems GaAs solar cell in space (v)

Validation without irradiation

Output parameters	2D simulation	Experiment [Liou 1994]	ID simulation [Laiadi 2008]	2D simulation [Elahidoost 2012]
J_{cc} (mA/cm ²)	28,58	32,37	23,86	24,08
Vco (V)	0,977	1,017	1,01	0,95
FF	0,884	0,815	0,88	0,839
<u>n</u> (%)	18,30	19,9	15,60	14,1

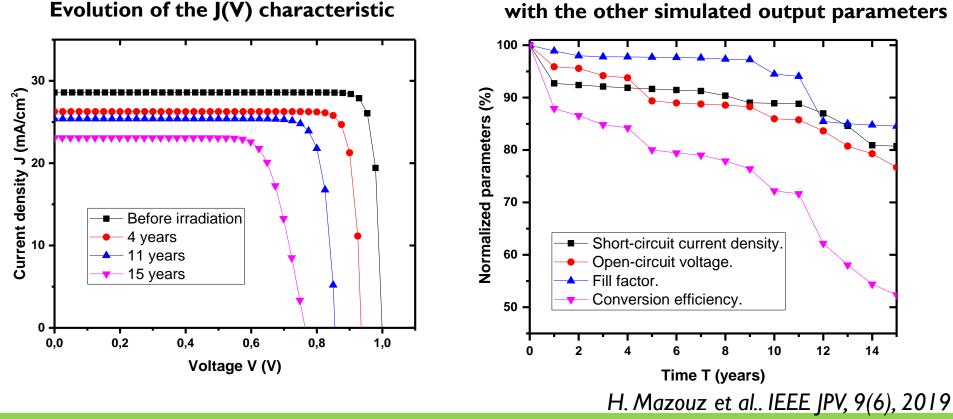
Validation under electron irradiation


Fluence (e.cm ⁻²)		$\varphi = 10^{14}$			$arphi=10^{15}$			$\varphi = 5.10^{15}$			$arphi=10^{16}$		
	Before irradiation	2D		1D		2D 1D		2D		1D	2D		1D
		modele	ref. [<i>Elahidoost</i> 2012]	ref. [<i>Laiadi</i> 2008]	modele	ref. [Elahidoost 2012]	ref. [<i>Laiadi</i> 2008]	modele	ref. [Elahidoost 2012]	ref. [<i>Laiadi</i> 2008]	modele	ref. [Elahidoost 2012]	ref. [<i>Laiadi</i> 2008]
J _{cc} (mA.cm ⁻²)	28,58	25,22	23,81	22,27	17,11	21,63	21,63	15,63	16,95	17,04	11,24	12,26	14,362
V _{oc} (V)	0,977	0,969	0,94	0,88	0,958	0,92	0,92	0,897	0,895	0,706	0, 886	<mark>0,8</mark> 7	0,678
FF	0,884	0,890	0,840	0,796	0,892	0,841	0,841	0,887	0,830	0,751	0,889	0,817	0,730
<u>n</u> (%)	18,30	16,12	13,9	11,5	10,84	12,35	12,35	9,21	9,375	6,60	6,56	6,4	5,23

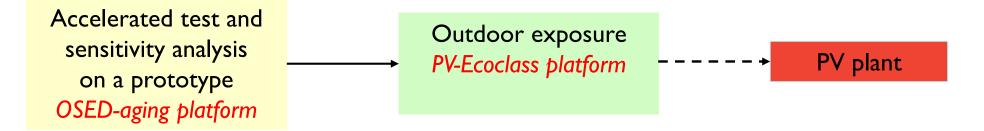
H. Mazouz et al.. IJHE, 40, 2015.

III. Studied systems GaAs solar cell in space (vi)

Sensitivity analysis



III. Studied systems GaAs solar cell in space (vii)


Normalized conversion efficiency degradation

Degradation of the performance in outer space

IV. Conclusion and perspectives

PhD students in progress:

- Mohamed El Hacen JED: defense on October 22th 2022
- Julia VINCENT: sequential accelerated tests on Si PV cells by Slite-Source
- Islem BOUJLEL: sensitivity analysis and energy performance of PV modules, aging of temperature coefficients

□ **Projects and collaborations:** ANAPHORE (OSU-Efluve), TotalEnergies, CERD Djibouti, EMSI (Morocco)

35

Thank you for your attention

36